Code: 20ME3501

III B.Tech - I Semester – Regular Examinations - DECEMBER 2022

HEAT TRANSFER (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max. Marks	
	UNIT-I					
1	a)	Derive a general heat conduction equation	L2	CO1	7 M	
		in rectangular coordinate system.				
	b)	A plane wall is 150mm thick and its wall	L2	CO1	7 M	
		area is $4.5m^2$. Its conductivity is				
		9.35W/m-K and temperatures are steady at				
		150°C and 45°C on both sides. Determine				
		the heat transfer rate in flow direction.				
	OR					
2	a)	Derive a three-dimensional generalized heat	L2	CO1	7 M	
		conduction equation in a cylindrical				
		coordinate system.				
	b)	List out the applications of heat transfer in	L2	CO1	7 M	
		various fields.				
		UNIT-II				
3	a)	Derive the expression for heat transfer in	L3	CO2	7 M	
		case of a rectangular plate fin of uniform				
		cross section with insulated end.				
	b)	What are heisleir charts? Under what	L3	CO2	7 M	
		conditions heislier charts are used in heat				
		transfer problems.				
	Page 1 of 4					

	OR					
4	a)	Two fins are identical except the diameter of one is twice that of the other. Compare their efficiencies and effectiveness.	L3	CO2	7 M	
	b)	A 1.0 mm diameter wire is maintained at a temperature of 400° C and exposed to a convective environment at 40° C with h=50W/m ² K. Calculate thermal conductivity which just causes an insulation thickness of 0.2 mm produce a critical radius. How much of this insulation must be added to reduce the heat transfer by 75%.	L3	CO2	7 M	
		UNIT-III	I			
5	a)	Using Buckingham П-Theorem obtain relation for natural convection in terms of dimensionless numbers.	L3	CO2	7 M	
	b)	 Water at 38°C flows over a wide, 6m long, heated plate at 0.06m/s. For a surface temperature of 93°C, determine: The hydrodynamic boundary layer thickness δ at the end of the plate. The total drag on the surface per unit width. The thermal boundary layer thickness δ_t at the end of the plate. The local heat transfer coefficient h_x at the end of the plate and v. The total heat flux from the surface per unit width. 	L3	CO2	7 M	
	OR					
6	a)	Explain the phenomena of natural convection over a vertical hot plate. Sketch the temperature and velocity boundary layer profiles.	L3	CO2	7 M	

	b)	Water flows in a duct having a cross section	L3	CO2	7 M			
		5 x 10 mm with a mean bulk temperature of						
		20°C. If the duct wall temperature is						
		constant at 60°C and fully developed						
		laminar flow is experienced, calculate the						
		heat transfer per unit length.						
	UNIT-IV							
7	a)	Explain the regimes of pool boiling.	L2	CO3	7 M			
	b)	Saturated steam at a temperature of 65°C	L3	CO3	7 M			
		condenses on a vertical surface at 55° C.						
		Determine the thickness of the condensate						
		film at locations 0.2m and 1.0m from the						
		top. Also calculate condensate flow rate at						
		these locations.						
		OR						
8	a)	Derive LMTD of parallel flow and counter	L2	CO3	7 M			
		flow heat exchangers.						
	b)	Refrigeration is designed to cool 250 kg/h	L3	CO3	7 M			
		of hot liquids of heat 3350 J/kgK at 120°C						
		using a parallel flow arrangement.						
		1000kg/h of cooling water is available for						
		cooling purpose at a temperature of 10°C. If						
		the overall heat transfer co-efficient is						
		$1160 \text{W/m}^2 \text{K}$ and the surface area of the heat						
		exchanger is $0.25m^2$. Calculate the outlet						
		temperature of the cooled liquid and water						
		and also effectiveness of the heat exchanger.						
UNIT-V								
9	a)	What is Stefan-Boltzmann Law? Explain	L4	CO1	7 M			
		the concept of total emissive power of a						
		surface.						
	b)	Two large parallel planes having	L4	CO4	7 M			
		emissivity's of 0.25 and 0.5 are maintained						

		 at temperatures of 1000K and 500K, respectively. A radiation shield having an emissivity of 0.1 is placed between the two planes. Calculate The heat-transfer rate per unit area if the shield were not present, The heat-transfer rate per unit area with the presence of the shield and 					
	OR						
10	a)	State Planck's distribution law and describe	L4	CO1	7 M		
		how monochromatic emissive power varies					
		with wavelength.					
	b)	A black body of total area $0.045m^2$ is completely enclosed in a sphere bounded by 5cm thick walls. The walls have a surface area $0.5m^2$ and the thermal conductivity is $1.1W/m^{\circ}C$ if the inner surface of the enveloping wall is to be maintained at $215^{\circ}C$ and the outer wall surface is at $30^{\circ}C$ calculate the temperature of the black body.	L4	CO4	7 M		